Distinct versus overlapping functions of MDC1 and 53BP1 in DNA damage response and tumorigenesis
نویسندگان
چکیده
The importance of the DNA damage response (DDR) pathway in development, genomic stability, and tumor suppression is well recognized. Although 53BP1 and MDC1 have been recently identified as critical upstream mediators in the cellular response to DNA double-strand breaks, their relative hierarchy in the ataxia telangiectasia mutated (ATM) signaling cascade remains controversial. To investigate the divergent and potentially overlapping functions of MDC1 and 53BP1 in the ATM response pathway, we generated mice deficient for both genes. Unexpectedly, the loss of both MDC1 and 53BP1 neither significantly increases the severity of defects in DDR nor increases tumor incidence compared with the loss of MDC1 alone. We additionally show that MDC1 regulates 53BP1 foci formation and phosphorylation in response to DNA damage. These results suggest that MDC1 functions as an upstream regulator of 53BP1 in the DDR pathway and in tumor suppression.
منابع مشابه
Sumoylation of MDC1 is important for proper DNA damage response.
In response to DNA damage, many DNA damage factors, such as MDC1 and 53BP1, redistribute to sites of DNA damage. The mechanism governing the turnover of these factors at DNA damage sites, however, remains enigmatic. Here, we show that MDC1 is sumoylated following DNA damage, and the sumoylation of MDC1 at Lys1840 is required for MDC1 degradation and removal of MDC1 and 53BP1 from sites of DNA d...
متن کاملGenomic Instability, Defective Spermatogenesis, Immunodeficiency, and Cancer in a Mouse Model of the RIDDLE Syndrome
Eukaryotic cells have evolved to use complex pathways for DNA damage signaling and repair to maintain genomic integrity. RNF168 is a novel E3 ligase that functions downstream of ATM,γ-H2A.X, MDC1, and RNF8. It has been shown to ubiquitylate histone H2A and to facilitate the recruitment of other DNA damage response proteins, including 53BP1, to sites of DNA break. In addition, RNF168 mutations h...
متن کاملSer1778 of 53BP1 Plays a Role in DNA Double-strand Break Repairs.
53BP1 is an important genome stability regulator, which protects cells against double-strand breaks. Following DNA damage, 53BP1 is rapidly recruited to sites of DNA breakage, along with other DNA damage response proteins, including gamma-H2AX, MDC1, and BRCA1. The recruitment of 53BP1 requires a tandem Tudor fold which associates with methylated histones H3 and H4. It has already been determin...
متن کاملNFBD1/Mdc1 mediates ATR-dependent DNA damage response.
Budding yeast Rad9 (scRad9) plays a central role in mediating Mec1-dependent phosphorylation by recruiting its downstream substrates. The human scRad9 orthologues 53BP1 and NFBD1 associate with ionizing radiation-induced foci (IRIF) at sites of DNA repair. RNAi-based gene silencing of 53BP1 or NFBD1 has shown impaired phosphorylation of SQ/TQ [ataxia-telangiectasia mutated/ATM and Rad3-related ...
متن کاملOrchestration of the DNA-damage response by the RNF8 ubiquitin ligase.
Cells respond to DNA double-strand breaks by recruiting factors such as the DNA-damage mediator protein MDC1, the p53-binding protein 1 (53BP1), and the breast cancer susceptibility protein BRCA1 to sites of damaged DNA. Here, we reveal that the ubiquitin ligase RNF8 mediates ubiquitin conjugation and 53BP1 and BRCA1 focal accumulation at sites of DNA lesions. Moreover, we establish that MDC1 r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of Cell Biology
دوره 181 شماره
صفحات -
تاریخ انتشار 2008